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Abstract— Random walk simulation is employed in many
experimental algorithmic applications. Efficient execution on
modern computer architectures demands that the random
walk be implemented to exploit data locality for improving
the cache performance. In this research, we demonstrate how
different one-dimensional data reordering functionals can be
used as a preprocessing step for speeding the random walk
runtime.
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1. Introduction
Random walk simulation is an important ingredient of

many scientific applications. It is employed, for example, in
data clustering [1], image segmentation [2], circuit clustering
[3], and computation of different kinds of data similarities
and scorings [4], [5]. Usually, the relationships between
the data elements in such applications can be modeled
by a graph, either directed or undirected, with a relevant
portion of information assigned to each node and edge.
Typically, the simulation (or the execution) of a random
walk consists of sequentially visiting a set of adjacent nodes
and their neighborhoods within some small distance. The
computational complexity of this process can be compared
to that of pointwise relaxation methods such as Jacobi or
Gauss-Seidel.

For modern architectures on which random walk appli-
cations are executed, accessing main memory is an order
of magnitude slower than accessing cache, which is smaller
but faster memory closer to the processor. Thus, one should
exploit cache as much as possible for efficient execution
of such applications. For applications with regular memory
accesses, a huge body of research work has been devoted to
loop transformations targeting efficient use of cache [6], [7],
[8], [9], [10], [11], [12], [13], and dramatic performance
improvement has been achieved. For applications with ir-
regular memory accesses such as random walk, however, a
better cache operation is a more complicated task if there
is a need to improve memory access time. In [14], Strout
and Hovland described runtime reordering transformations
for data in memory and for iterations of loops for better use
of cache in applications with irregular memory accesses.

In this paper we demonstrate how the improvement of data
locality can influence the performance of a random walk
simulation, which typically represents a highly irregular

part of scientific codes. The data locality is improved by
minimizing various linear ordering metrics [15] of a data
graph. Since the cache memory architecture represents "a
collection of one-dimensional lines" [16], the linear order-
ing graph embeddings can serve as possible models for
minimizing the distance between the data parts in memory
access processes. Different linear ordering functionals can
lead to data localities that are contrary to each other. Be-
sides improving random walk performance, the goal of this
work is to compare several ways of minimizing the local
contribution of a vertex to the global ordering (in a context
of data locality) by: (a) bounding maximum edge length (∞-
sum functional); (b) reducing the average vertex contribution
(2-sum functional); (c) measuring a real distance between
two nodes (1-sum functional) and other. In contrast to the
approach proposed in [14], here the data reordering is done
as a preprocessing step of a particular application that uses
random walk. Thus there is no need to know the runtime
data access pattern but only the connectivity of the graph on
which the random walk is performed.

2. Definitions and Methods
Consider a random walk [17] on an edge-weighted di-

rected graph G = (V,E) with a weighting function on
the set of edges w : E → R+ ∪ {0}. Denote by wij the
nonnegative weight of the directed edge ij between nodes i
and j. If ij /∈ E, then wij = 0.

Random walk may be viewed as a process of sequential
vertex visiting. Starting at node i0, at the tth step of a walk,
we move to it, one of the it−1’s neighbors, with probability

Pt =
wit−1it∑

it∈N(it−1)
wit−1it

, (1)

where N(i) = {j ∈ V : ij ∈ E}.
We have tested three data reordering metrics based on

the p-sum functionals [15] with p = 1, 2 and ∞, and the
workbound functional [18]. Let π be a bijection

π : V −→ (1, 2, ..., n) .

The following functional is minimized for the minimum p-
sum problem over all possible permutations π:

σp(G, π) =
∑
ij∈E

(
wij |π(i)− π(j)|p

)1/p
. (2)



In particular, we concentrate on the minimum bandwidth
problem (when p = ∞), which seeks a linear layout that
minimizes the maximal stretched edge, namely,

bw(G) = min
π

max
ij∈E

wij |π(i)− π(j)| . (3)

The minimization functional of the workbound reduction
problem is defined as

wb(G, π) =
∑
i

max
j

π(j)<π(i)

wij(π(i)− π(j))2 . (4)

Except the 1-sum functional, other functionals were not used
for the data locality impovement algorithms. In particular, we
are interested in the workbound functional which represents
a combination of two p-sum functionals and may be viewed
as a measure for minimizing the maximum edge length per
vertex.

Because of the NP-hardness [19], [20] for minimization
of the above functionals, we used four multilevel solvers
[21] for approximate minimization of the functionals. These
solvers provide orderings that are at least comparable to the
best-known heuristics, while keeping linear running time. In
addition, we tested the Cuthill-McKee bandwidth reduction
algorithm, which produces results of significantly poorer
quality (in comparison to many other state-of-the-art heuris-
tics [21]) but is extremely fast and easily implementable. We
used the symmetric version of the reverse Cuthill-McKee
solver implemented in Matlab as the function “symrcm”.

We denote by δ, ∆, and δ, the minimum, maximum, and
average vertex degree of G, respectively.

3. A Random Walk Simulation Algo-
rithm

Algorithm 1 shows the simulation of a random walk that
we tested. In general, the tight upper bound of the random
walk cover time is very big [22] to perform a full simulation,
and we used a restart strategy to cover fully each graph faster.
The algorithm consists of 1000 restart iterations of a random
walk in order to ensure better coverage of the graphs in
case some contain hidden “highly connected” components,
that is, components that ensure with high probability that
the hitting time inside them is much smaller. Each sweep
of a random walk consists of 100|V | steps, and in general
we did not observe a situation when the entire graph was
not covered by 1000 sweeps. It is important to indicate that
several experiments with significantly bigger number of steps
and iterations were performed. However, the improvement
obtained during the longer runs was similar to that obtained
with the mentioned constants. The calculation performed at
each step of the random walk is computationally comparable
to one step of the Gauss-Seidel process.

In many implementations a graph model-based data struc-
ture contains an appropriate amount of data at each node or
edge. Two data allocation models were tested in order to

Input: graph G = (V,E)
for iter =1 to 1000 do
∀ i ∈ V define wi = rand();
∀ ij ∈ E wij = rand();
t = 0;
i← randomly chosen vertex;
while t < 100|V | do

wi = wi +
∑
ij wijwj/

∑
ij wij ;

i← randomly chosen vertex among the
neighbors of i with probability Pt;
t = t+ 1;

end
end

Algorithm 1: Random walk with 1000 restarts

compare the improved data locality reordering schemes and
metrics. In the homogeneous allocation model (HM) the
amount of data (in bytes) stored at each node is slightly
bigger than the maximum node degree on G, and there is
no difference between the memory performances on high-
and low-degree nodes. Low-degree nodes were artificially
filled by useless information, and this information was ac-
cessed while visiting these nodes. The second model, called
nonhomogeneous (NHM), allows one to keep only a few
numbers of double precision; that is, the most of the memory
space allocated at each node is occupied by the pointers
and information on its neighbors. In both models, the access
time of a next neighbor node was O(1), and the graphs were
stored in continuous segments of memory without accessing
a hard disk.

4. Experimental Results
To estimate how the runtime of a random walk behaves

with the improved data locality, we compared the runtime
of a random walk with and without reordering. The exper-
imental results are summarized in Figures 1 and 2 which
represent the comparisons of the HM and NHM models,
respectively.

We chose 15 graphs (see Table 1) of different size and
structure from [23] and measured the runtime of the same
random walk on the randomly disordered graphs, originally
ordered, and ordered graphs by the five previously mentioned
heuristics. All experiments were performed under operating
systems Linux and Windows XP. In general, no difference
was observed between these two cases.

Each 5-tuple of bars (presented in Figures 1 and 2)
corresponds to the five ratios between the runtime measure-
ments of ordered and disordered graph, respectively. The
first (2nd, 3rd, 4th, and 5th) bar correspond to the ratio
between the runtime of the ordered graph by applying 1-
sum (workbound, 2-sum, bandwidth, and Cuthill-Mckee)
algorithm and the runtime of the disordered graph.



Fig. 1: Homogeneous model. Each 5-tuple of bars corre-
sponds to the five ratios between the runtime measurements
of ordered and disordered graph, respectively. The first (2nd,
3rd, 4th, and 5th) bar correspond to the ratio between the
runtime of the ordered graph by applying 1-sum (work-
bound, 2-sum, bandwidth, and Cuthill-Mckee) algorithm and
the runtime of the disordered graph.

Fig. 2: Nonhomogeneous model. Each 5-tuple of bars corre-
sponds to the five ratios between the runtime measurements
of the ordered and disordered graph, respectively. The first
(2nd, 3rd, 4th, and 5th) bar correspond to the ratio between
the runtime of the ordered graph by applying 1-sum (work-
bound, 2-sum, bandwidth, and Cuthill-Mckee) algorithm and
the runtime of the disordered graph.

Graph |V | |E| δ ∆ δ
diw0079 11821 22516 1 4 3.81
horse 48485 145449 3 16 6.00
f117 48518 293581 3 39 12.10
nasa4704 4704 50026 5 41 21.27
torso 168930 1254712 6 46 14.85
finan512 74752 261120 2 54 6.99
onetone2 36057 201173 1 66 11.16
plgr10000_2 8467 13661 1 77 3.23
net100 28084 966960 2 180 68.86
bcsstk30 28924 1007284 3 218 69.65
fxm4_6 18892 239476 3 308 25.35
memplus 17753 41534 1 352 4.68
3dtube 45330 1584144 9 2363 69.89
p2p_7 11174 23409 1 2389 4.19
gupta3 16783 4653322 32 14671 554.53

Table 1: Experimental graphs

The most successful metric for the data locality improve-
ment for a random walk was the 1-sum functional with
the corresponding minimization algorithm [24]. The next
most competitive heuristic was the Cuthill-Mckee algorithm
which also produces the 1-sum orderings at compatible
costs for graphs 1, 2, 4, 6, and 14. However, there are
several graphs with big ratio gaps in favor of the 1-sum
functional. Although the Cuthill-Mckee algorithm is fast and
can be easily implemented, it has a serious disadvantage:
its sensitivity to the initial vertex ordering it starts from
can lead to many unexpected problems. On the other hand,
the runtime of 1-sum heuristics [24] is also linear. Thus,
we conclude that having a good-enough algorithm for the
minimization of 1-sum functional can lead to the best results
among the tested functionals.

Experimenting with power-law graphs. Graphs with a
vertex degree sequence proportional to the power-law distri-
butions model many real-life processes, such as Internet con-
nectivity, biological networks, and various social networks.
All previously mentioned techniques of data reordering were
applied to a set of ten power-law graphs of different sources.
The differences in the observed improvement among the
five reordering methods were not as big as they were for
other general graphs. Moreover, it is almost impossible to
distinguish between three 1(2,∞)-sum minimizers and the
Cuthill-Mckee algorithm, which exhibited an improvement
between 0.78 and 0.81 in terms of ratios in Figures 1 and
2. The improvement obtained by the minimum workbound
solver was less significant: 0.85 on average.

Experimenting with original orderings. To complete the
comparison of different orderings, we examined the original
graph orderings. In practice, the original ordering of a graph
depends on the database. Typically, however, applications
use their own graphs that are created by local connection
ordering (BFS- or DFS-based orderings), that is, according
to the order of vertex creation. This ordering can be much
worse (in terms of minimizing all previously mentioned
metrics) if the graph (the finite element or another structure)



is created by a parallel algorithm when different portions
of data from different regions are saved in parallel. Indeed
sometimes this ordering can have even worse minimization
results than randomized expected costs. Such orderings can
be suitable when the graphs have very strong local, but
not global, connectivity. The situation with local connection
orderings turns out to be much worse when the graph has
a structure that is not similar to the finite element, for
example when there are global connections that can destroy
the beauty of local connection orderings. In general, in this
paper a randomized ordering is used as a more meaningful
upper bound than different local ordering methods (see [25])
that have a big variability. However, we compared our results
with those from the original ordering schemes and observed
that the difference between runtime after a reverse Cuthill-
McKee algorithm and randomized ordering and between
runtime obtained by original ordering and randomized order-
ing is about 30%. Thus, according to our observations, the
reverse Cuthill-McKee algorithm represents the best version
among different original local orderings.

5. Discussion
As a first stage of this work, we have tried to improve

the results obtained in [14] in which different metrics and
reordering algorithms were proposed and tested. However,
although the improved ordering reduces these metrics by up
to 15% (on the average), we did not observe an improvement
in runtime when we applied state-of-the-art heuristics to
transformations reordering for the finite-element instances
from [14].

To understand the experimental results shown in Figure 2,
we performed the same experiment on another machine and
measured hardware performance counters using PAPI [26].
The machine has 2.5 GHz AMD Phenom processors, and
the memory hierarchy incorporates three levels of cache (64
KB L1 data cache, 512 KB L2 cache, 2 MB L3 cache) and
4 GB of memory. Level 1 cache is fastest and closest to the
processor but smallest, whereas level 3 cache is largest in
size but slowest next to the main memory. Another important
part of memory hierarchy is the translation lookaside buffer
(TLB), which keeps the mapping between virtual addresses
issued by the processor and the corresponding physical
addresses. If the mapping is not found in TLB, the page
table in main memory has to be referenced, and the mapping
is brought into TLB similar to the way data cache works.
The machine we used in this experiment has 48 entries at
L1 data TLB and 512 entries at L2 data TLB.

Figure 3 shows cache and TLB misses for the reordered
graphs normalized by the corresponding misses for the
randomly shuffled graphs. The graphs on the x-axis are
sorted in decreasing order of performance improvements (or
increasing order of normalized runtimes) of the reordered
graphs over the shuffled ones so that general trends are easier
to see. In all cases, cache and TLB misses have decreased for

Fig. 3: Cache and TLB misses. Each graph corresponds to
5-tuple of bars. These bars show the numbers of data misses:
(bar1)-L1 cache misses; (bar2)-L2 cache misses; (bar3)-L3
cache misses; (bar4)-TLB misses; and (bar5)-total cycles.

Fig. 4: Graph size and 1-sum. Each graph corresponds to
3-tuple of bars. The first bar represents the graph size; the
second bar shows 1-sum minimization result; and the third
bar corresponds to the total cycles number.



the reordered graphs explaining the performance improve-
ments. Also, for the larger performance improvements in
the left side of the graph, the reductions in TLB misses are
larger, with the exception of gupta3.

Since our graph reordering improves the data locality,
we checked the relationship between the performance and
working data size. Figure 4 shows graph sizes in memory
normalized by the biggest size for gupta3 and 1-sum
ordering costs normalized by the 1-sum ordering costs of
the unoptimized graphs. In general, for the larger speedups
on the left side of the graph, graph sizes are larger and 1-
sum ordering costs are smaller. We expect that the benefit of
the technique proposed in this paper increases as the graph
size gets bigger, the machine’s cache size gets smaller, and
the normalized 1-sum is smaller.

6. Conclusions
Our research demonstrates how to improve the data lo-

cality for a random walk simulation, which can be a highly
irregular part of scientific code. In particular, we conclude
that minimizing a 1-sum functional at the preprocessing
stage can lead to the best performance results. On the
other hand, although a reverse Cuthill-McKee reordering
scheme can produce slightly longer runtime simulation, its
implementation is extremely easy.

The main difference between qualities of the reverse
Cuthill-McKee and multilevel solvers is that the multilevel
solver allows one to improve a global ordering rather than
the local only. The cuthill-McKee algorithm is preferable for
use in the experimental instance has high local connectivity
only; otherwise it is very likely to obtain much better runtime
with a multilevel 1-sum solver.

During the experiments, different linear ordering function-
als were tested. It turns out that the weakest functionals are
those that lead to the minimization of an average vertex
contribution to the total energy of the linear ordering (2-
sum and workbound). On the other hand, the functionals
and algorithms that minimize a "real line distance" between
data parts in cache can significantly improve the performance
(1-sum functional and Cuthill-McKee algorithm).
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